Product Description
Air Dryer / Combined air dryer / Air cooled refrigerated combined air dryer compressor for sale
Detailed Photos
(1) Air-cooled combined dryer
Technological Process of the Combined Low Dew Point Compressed Air Dryer
| Symbol | Name | Symbol | Name |
| 1 | Refrigerant Compressor | 15 | Air Pressure Gauge |
| 2 | Oil Separator | 16 | Heat Exchanger |
| 3 | Condenser | 17 | Pressure Relief Valve |
| 4 | Dryer Filter | 18,19 | Check Valve |
| 5 | Sight Lens | 20,21 | Check Valve(Heat Type) |
| 6 | Bulge Thermal Expansion Valve | 22,23,24,25 | Pneumatic Valve |
| 7 | Hot Gas Bypass Valve | 26,29,30,33 | Diffuser |
| 8 | Vaporizer | 27,31 | Air Pressure Gauge |
| 9 | Humidity Sensor | 28,32 | Adsorption Vessel |
| 10 | Evaporator | 34,35,36,37 | Pilot Solenoid Valve |
| 11 | Refrigerant Low Pressure Gauge |
38 | Muffler |
| 12 | Refrigerant Low Pressure Gauge |
39 | Flow Regulating Valve(Heatless Type) |
| 13 | High and Low Pressure Controller | 40 | Throttling Orifice Plate(Heat Type) |
| 14 | Gas Liquid Separator | 41 | Electical Heater(Heat Type) |
General Introduction:
Commonly, there are 2 kinds of compressed air dryer: refrigerated compressed air dryer and regeneration adsorption one. The refrigerated compressed air dryer is quite energy-saving without any air loss, While it is limited by the dew point temperature. The regeneration adsorption compressed air dryer can reach a quiet low dew point, but it has the shortcoming of big air loss and high energy consumption.
The CHINAMFG combined low dew point compressed air dryer takes the maximum advantages of the above 2 kinds of dryers through reasonable pipeline connection and capacity matching, which ensure its economic operation and high quality of low dew point finished air.
Operating Principle:
Firstly, the hot and wet compressed air from the compressor is heat exchange with dried cold compressed air in the heat exchanger. Then it will be cooled down to about 2ºC by evaporator. Under this pressure dew point, the majority of vapor water in the compressed air is eliminated and discharged. After these processes, the low temperature air goes into the heat exchanger to cool the high wet compressed air, at the same time, itself temperature goes up in order to prevent the condensation of dew on the surface of pipelines. Last, low moisture compressed air dryer goes into the adsorption vessel to be further dried in order to get the good dew point.
(2) Water-Cooled Combined Type Air Dryer
Working condition and technical data
Maximum inlet air temperature:45ºC
Ambient temperature range:5-50ºC
Pressure range:0.6-1.0Mpa
Pressure dew point:-20ºC ~ -40ºC
Regeneration gas consumption:3-5%
Cooling mode: water cooling (industrial circulating cooling water)
Cooling water pressure range: 0.2-0.4mpa
Maximum cooling water inlet temperature: 38 ºC
Intake oil content: ≤ 0.1ppm
Power supply: 6-12nm 3 / min: AC 220 V / 50 Hz
15nm3 / min and above: AC 380V / 220V / 50Hz
Cycle: T = 40 (min)
Refrigerant: R22 (R407C / R134a optional)
Design condition: inlet temperature: 38 ºC
Ambient temperature: 38 ºC
Working pressure: 0.7MPa
Cooling water inlet temperature: 32 ºC
Pressure loss: ≤ 5% of design pressure
Note: the water-cooled equipment above 80 cubic CHINAMFG are split bare machines. Other special requirements are welcome to customize.
Product features
- Low dew point:The combined low dew point dryer can reach very low pressure dew point, which can reach below – 40 ºC in general, and – 70 ºC at least according to different user requirements;
- Low energy consumption: the regeneration gas consumption of combined low dew point dryer is only 3% – 5%, which greatly saves the compressed air consumption;
- It can provide compressed air with different dew points for different air consumption points;
- All the operation switches and display instruments of the combined low dew point compressed air dryer are concentrated on the panel of the box plate. The refrigeration type compressed air dryer and the adsorption regeneration compressed air dryer can operate independently or simultaneously with cold and suction according to the customer’s needs;
- The gas-liquid separator adopts the patented three-stage separation mode: direct collision separation + low-speed centrifugal separation + stainless steel wire mesh demisting separation. 99.9% of liquid water is separated from the cooled compressed air. The second evaporation of textile moisture can ensure the low dew point quality of finished gas.
- High quality switching valve, stable and reliable, can ensure the integrity of the working process and prolong the working life of components.
- The refrigeration compressor adopts CHINAMFG of Denmark, CHINAMFG of ZheJiang , CHINAMFG of Japan, CHINAMFG of Germany, CHINAMFG of Germany, CHINAMFG of France and other companies of fully closed or semi closed refrigeration compressor, which has stable operation, low noise, high cop, reliable performance and long power saving life;
Product Parameters
(1) Air-Cooled Combined Type Air Dryer specification
|
Model |
Air capacity (Nm3/min) |
Desiccant weight(kg) | Air connector dia | Refrigerant power (HP) |
Air flow (Nm3/h) |
Fan power(W) | Voltage (V) |
Dryer Net Weight (kg) |
Length(mm) | Wideth(mm) | Height(mm) |
| SDZF-1 | 1.2 | 25 | G1″ | 1/2 | 745 | 1×50 | 220 | 400 | 1080 | 850 | 1460 |
| SDZF-2 | 2.5 | 40 | G1″ | 1/2 | 745 | 1×50 | 220 | 440 | 1100 | 900 | 2050 |
| SDZF-3 | 3.6 | 60 | G1″ | 3/4 | 1330 | 1×100 | 220 | 460 | 1200 | 1000 | 1808 |
| SDZF-4.5 | 5 | 85 | G1 1/2″ | 1 | 2670 | 1×135 | 220 | 660 | 1290 | 1030 | 2263 |
| SDZF-6 | 6.8 | 105 | G1 1/2″ | 1.5 | 4500 | 1×230 | 220 | 775 | 1500 | 1105 | 1931 |
| SDZF-8 | 8.5 | 150 | G2″ | 2 | 5340 | 2×135 | 220 | 970 | 1500 | 1240 | 2016 |
| SDZF-10 | 10.9 | 185 | G2″ | 2.5 | 5340 | 2×135 | 220 | 1120 | 1500 | 1240 | 2316 |
| SDZF-12 | 12.8 | 185 | G2″ | 2.5 | 5340 | 2×135 | 220 | 1120 | 1500 | 1240 | 2316 |
| SDZF-15 | 16 | 310 | DN65 | 3 | 7600 | 2×190 | 380/220 | 1700 | 1960 | 1450 | 2342 |
| SDZF-20 | 22 | 395 | DN65 | 4 | 7600 | 2×190 | 380/220 | 1800 | 1980 | 1600 | 2408 |
| SDZF-25 | 26.8 | 492 | DN80 | 5 | 9000 | 2×230 | 380/220 | 2100 | 2270 | 1700 | 2460 |
| SDZF-30 | 32 | 600 | DN80 | 6 | 9000 | 2×230 | 380/220 | 2300 | 2420 | 1780 | 2506 |
| SDZF-40 | 43.5 | 725 | DN100 | 7 | 12500 | 2×420 | 380/220 | 2700 | 2100 | 2340 | 2673 |
| SDZF-50 | 53 | 855 | DN100 | 10 | 13500 | 3×230 | 380/220 | 2900 | 2100 | 2390 | 2687 |
| SDZF-60 | 67 | 1005 | DN125 | 12 | 18750 | 3×420 | 380/220 | 3350 | 2250 | 2600 | 2814 |
| SDZF-80 | 90 | 1335 | DN125 | 13.3 | 25000 | 4×420 | 380/220 | 4200 | 2640 | 2600 | 2866 |
Note:Design conditions: working pressure: 7bar, inlet temperature: 38ºC, pressure dew point: -20ºC
(2) Water-Cooled Combined Type Air Dryer
Product specifications
| model | Air capacity (Nm3/min) |
Weight of desiccant(kg) | Air nozzle diameter | Diameter of cooling water pipe | Cooling power (HP) |
Cooling water flow (Nm3/h) |
Voltage (V) |
Equipment weight (kg) |
L(mm) | W(mm) | H(mm) |
| SDZW-6 | 6.8 | 105 | G1 1/2″ | R1″ | 1.5 | 1.2 | 220 | 760 | 1500 | 1160 | 1940 |
| SDZW-8 | 8.5 | 150 | G2″ | R1″ | 2 | 1.2 | 220 | 960 | 1500 | 1100 | 2016 |
| SDZW-10 | 10.9 | 185 | G2″ | R1″ | 2.5 | 1.6 | 220 | 1120 | 1500 | 1240 | 2316 |
| SDZW-12 | 12.8 | 185 | G2″ | R1″ | 2.5 | 1.8 | 220 | 1150 | 1500 | 1240 | 2316 |
| SDZW-15 | 16 | 275 | DN65 | R1″ | 3 | 2 | 380/220 | 1660 | 1960 | 1450 | 2196 |
| SDZW-20 | 22 | 395 | DN65 | R1 1/2″ | 4 | 3 | 380/220 | 1740 | 1970 | 1600 | 2475 |
| SDZW-25 | 26.8 | 495 | DN80 | R1 1/2″ | 5 | 3.6 | 380/220 | 2075 | 2030 | 1630 | 2505 |
| SDZW-30 | 32 | 605 | DN80 | R1 1/2″ | 6 | 4.6 | 380/220 | 2200 | 2240 | 1840 | 2519 |
| SDZW-40 | 43.5 | 725 | DN100 | R1 1/2″ | 7 | 5.6 | 380/220 | 2784 | 2360 | 1900 | 2637 |
| SDZW-50 | 53 | 860 | DN100 | R1 1/2″ | 10 | 7.2 | 380/220 | 3144 | 2400 | 2000 | 2638 |
| SDZW-60 | 67 | 1005 | DN125 | R1 1/2″ | 12 | 9.2 | 380/220 | 3361 | 2540 | 2100 | 2719 |
| SDZW-80 | 90 | 1335 | DN125 | R1 1/2″ | 13.3 | 10.8 | 380/220 | 4500 | 2640 | 2450 | 2818 |
| SDZW-100 | 110 | 2155 | DN150 | R1 1/2″ | 20 | 12.4 | 380/220 | 6550 | 2680 | 2670 | 2985 |
| SDZW-120 | 130 | 2650 | DN150 | R2″ | 25 | 14.6 | 380/220 | 7810 | 2820 | 2800 | 3041 |
| SDZW-150 | 160 | 3205 | DN200 | R2″ | 25 | 16.2 | 380/220 | 8500 | 3290 | 3130 | 3190 |
| SDZW-200 | 210 | 3825 | DN200 | R2 1/2″ | 40 | 18.6 | 380/220 | 9600 | 3350 | 3375 | 3309 |
| SDZW-250 | 260 | 5260 | DN250 | R2 1/2″ | 60 | 24.4 | 380/220 | Detailed parameters and consultation with manufacturers | |||
| SDZW-300 | 315 | 6160 | DN250 | R3″ | 70 | 30.5 | 380/220 | Detailed parameters and consultation with manufacturers | |||
Optional Accessories
- Micro heat type
- Dew point display
- Dew point energy saving control
- Special voltage
- Environmental refrigerant
- – 70 ºC dew point
- Not limited to this
Company Profile
Certifications
Packaging & Shipping
FAQ
| After-sales Service: | Ok |
|---|---|
| Warranty: | 1 Year |
| Flow: | Cross Flow |
| Material Status: | Bulk |
| Drying Medium: | Air |
| Structure: | All Kinds |
| Samples: |
US$ 1000/Set
1 Set(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
What are the advantages of using rotary vane compressors?
Rotary vane compressors offer several advantages that make them a popular choice for various applications. These compressors are widely used in industries where a reliable and efficient source of compressed air is required. Here are the advantages of using rotary vane compressors:
1. Compact and Lightweight:
Rotary vane compressors are typically compact and lightweight compared to other types of compressors. Their compact design makes them suitable for installations where space is limited, such as in small workshops or mobile applications. The lightweight nature of these compressors allows for easy transportation and maneuverability.
2. High Efficiency:
Rotary vane compressors are known for their high efficiency. The design of the vanes and the compression chamber allows for smooth and continuous compression, resulting in minimal energy losses. This efficiency translates into lower energy consumption and reduced operating costs over time.
3. Quiet Operation:
Rotary vane compressors operate with relatively low noise levels. The design of the compressor, including the use of vibration damping materials and sound insulation, helps to minimize noise and vibrations during operation. This makes rotary vane compressors suitable for applications where noise reduction is important, such as in indoor environments or noise-sensitive areas.
4. Oil Lubrication:
Many rotary vane compressors utilize oil lubrication, which provides several benefits. The oil lubrication helps to reduce wear and friction between the moving parts, resulting in extended compressor life and improved reliability. It also contributes to better sealing and improved efficiency by minimizing internal leakage.
5. Versatile Applications:
Rotary vane compressors are versatile and can be used in a wide range of applications. They are suitable for both industrial and commercial applications, including automotive workshops, small manufacturing facilities, dental offices, laboratories, and more. They can handle various compressed air requirements, from light-duty tasks to more demanding applications.
6. Easy Maintenance:
Maintenance of rotary vane compressors is relatively straightforward. Routine maintenance tasks typically include oil changes, filter replacements, and periodic inspection of vanes and seals. The simplicity of the design and the availability of replacement parts make maintenance and repairs easier and more cost-effective.
These advantages make rotary vane compressors an attractive choice for many applications, providing reliable and efficient compressed air solutions.
.webp)
How do you maintain proper air quality in compressed air systems?
Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:
1. Air Filtration:
Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.
2. Moisture Control:
Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.
3. Oil Removal:
If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.
4. Regular Maintenance:
Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.
5. Air Receiver Tank Maintenance:
Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.
6. Air Quality Testing:
Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.
7. Education and Training:
Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.
8. Documentation and Record-Keeping:
Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.
By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.
.webp)
What maintenance is required for air compressors?
Maintaining air compressors is essential to ensure their optimal performance, longevity, and safe operation. Regular maintenance helps prevent breakdowns, improves efficiency, and reduces the risk of accidents. Here are some key maintenance tasks for air compressors:
1. Regular Inspection: Perform visual inspections of the air compressor to identify any signs of wear, damage, or leaks. Inspect the compressor, hoses, fittings, and connections for any abnormalities. Pay attention to oil leaks, loose bolts, and worn-out components.
2. Oil Changes: If your air compressor has an oil lubrication system, regular oil changes are crucial. Follow the manufacturer’s recommendations for the frequency of oil changes and use the recommended oil type. Dirty or degraded oil can impact compressor performance and lead to premature wear.
3. Air Filter Cleaning or Replacement: Clean or replace the air filter regularly to ensure proper air intake and prevent contaminants from entering the compressor. Clogged or dirty filters can restrict airflow and reduce efficiency.
4. Drain Moisture: Air compressors produce moisture as a byproduct of the compression process. Accumulated moisture in the tank can lead to rust and corrosion. Drain the moisture regularly from the tank to prevent damage. Some compressors have automatic drains, while others require manual draining.
5. Belt Inspection and Adjustment: If your compressor has a belt-driven system, inspect the belts for signs of wear, cracks, or tension issues. Adjust or replace the belts as necessary to maintain proper tension and power transmission.
6. Tank Inspection: Inspect the compressor tank for any signs of corrosion, dents, or structural issues. A damaged tank can be hazardous and should be repaired or replaced promptly.
7. Valve Maintenance: Check the safety valves, pressure relief valves, and other valves regularly to ensure they are functioning correctly. Test the valves periodically to verify their proper operation.
8. Motor and Electrical Components: Inspect the motor and electrical components for any signs of damage or overheating. Check electrical connections for tightness and ensure proper grounding.
9. Keep the Area Clean: Maintain a clean and debris-free area around the compressor. Remove any dirt, dust, or obstructions that can hinder the compressor’s performance or cause overheating.
10. Follow Manufacturer’s Guidelines: Always refer to the manufacturer’s manual for specific maintenance instructions and recommended service intervals for your air compressor model. They provide valuable information on maintenance tasks, lubrication requirements, and safety precautions.
Regular maintenance is vital to keep your air compressor in optimal condition and extend its lifespan. It’s also important to note that maintenance requirements may vary depending on the type, size, and usage of the compressor. By following a comprehensive maintenance routine, you can ensure the reliable operation of your air compressor and maximize its efficiency and longevity.


editor by CX 2023-10-27