Product Description
Product Description
Product display
ABOUT US
ZHangZhoug Briliant Refrigeration Equipment Co., Ltd. is a professional Refrigeration Equipment Co., Ltd.,
a production base,which integrates compressor design, development, production and sales Located in ZHangZhoug province,close to the 104 national highway line, and Shangsan expressway, Yong jin expressway connected, convenient traffic.
Founded in 2013, the company now has more than 100 employees,The factory covers a total area of 17,000 square meters.
Certificate
FAQ
Q1: Wonder if you accept small orders?
A1: Do not worry. Feel free to contact us .in order to get more orders and give our clients more convener ,
we accept small order.
Q2: Can you send products to my country?
A2: Sure, we can. If you do not have your own ship forwarder,
we can help you.
Q3: Can you do OEM for me?
A3: We accept all OEM orders,just contact us and give me your design.
we will offer you a reasonable price and make samples for you ASAP.
Q4: What’s your payment terms ?
A4: By T/T,LC AT SIGHT,30% deposit in advance, balance 70% before shipment.
Q5: How long is your production lead time?
A5:It depends on product and order qty. Normally, it takes us 15 days for an order with MOQ qty.
Q6: When can I get the quotation ?
A6: We usually quote you within 24 hours after we get your inquiry. If you are very urgent to get the quotation.
Please call us or tell us in your mail, so that we could regard your inquiry priority.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Cylinder Arrangement: | Balanced Opposed Arrangement |
| Cylinder Position: | Angular |
| Structure Type: | Semi-Closed Type |
| Compress Level: | Single-Stage |
| Samples: |
US$ 600/Piece
1 Piece(Min.Order) | |
|---|
.webp)
What are the advantages of using rotary vane compressors?
Rotary vane compressors offer several advantages that make them a popular choice for various applications. These compressors are widely used in industries where a reliable and efficient source of compressed air is required. Here are the advantages of using rotary vane compressors:
1. Compact and Lightweight:
Rotary vane compressors are typically compact and lightweight compared to other types of compressors. Their compact design makes them suitable for installations where space is limited, such as in small workshops or mobile applications. The lightweight nature of these compressors allows for easy transportation and maneuverability.
2. High Efficiency:
Rotary vane compressors are known for their high efficiency. The design of the vanes and the compression chamber allows for smooth and continuous compression, resulting in minimal energy losses. This efficiency translates into lower energy consumption and reduced operating costs over time.
3. Quiet Operation:
Rotary vane compressors operate with relatively low noise levels. The design of the compressor, including the use of vibration damping materials and sound insulation, helps to minimize noise and vibrations during operation. This makes rotary vane compressors suitable for applications where noise reduction is important, such as in indoor environments or noise-sensitive areas.
4. Oil Lubrication:
Many rotary vane compressors utilize oil lubrication, which provides several benefits. The oil lubrication helps to reduce wear and friction between the moving parts, resulting in extended compressor life and improved reliability. It also contributes to better sealing and improved efficiency by minimizing internal leakage.
5. Versatile Applications:
Rotary vane compressors are versatile and can be used in a wide range of applications. They are suitable for both industrial and commercial applications, including automotive workshops, small manufacturing facilities, dental offices, laboratories, and more. They can handle various compressed air requirements, from light-duty tasks to more demanding applications.
6. Easy Maintenance:
Maintenance of rotary vane compressors is relatively straightforward. Routine maintenance tasks typically include oil changes, filter replacements, and periodic inspection of vanes and seals. The simplicity of the design and the availability of replacement parts make maintenance and repairs easier and more cost-effective.
These advantages make rotary vane compressors an attractive choice for many applications, providing reliable and efficient compressed air solutions.
.webp)
How are air compressors used in refrigeration and HVAC systems?
Air compressors play a vital role in refrigeration and HVAC (Heating, Ventilation, and Air Conditioning) systems, providing the necessary compression of refrigerant gases and facilitating the heat transfer process. Here are the key ways in which air compressors are used in refrigeration and HVAC systems:
1. Refrigerant Compression:
In refrigeration systems, air compressors are used to compress the refrigerant gas, raising its pressure and temperature. This compressed gas then moves through the system, where it undergoes phase changes and heat exchange to enable cooling or heating. The compressor is the heart of the refrigeration cycle, as it pressurizes and circulates the refrigerant.
2. Refrigeration Cycle:
The compression of refrigerant gas by the air compressor is an essential step in the refrigeration cycle. After compression, the high-pressure, high-temperature gas flows to the condenser, where it releases heat and condenses into a liquid. The liquid refrigerant then passes through an expansion valve or device, which reduces its pressure and temperature. This low-pressure, low-temperature refrigerant then enters the evaporator, absorbing heat from the surrounding environment and evaporating back into a gas. The cycle continues as the gas returns to the compressor for re-compression.
3. HVAC Cooling and Heating:
In HVAC systems, air compressors are used to facilitate cooling and heating processes. The compressor compresses the refrigerant gas, which allows it to absorb heat from the indoor environment in the cooling mode. The compressed gas releases heat in the outdoor condenser unit and then circulates back to the compressor to repeat the cycle. In the heating mode, the compressor reverses the refrigeration cycle, absorbing heat from the outdoor air or ground source and transferring it indoors.
4. Air Conditioning:
Air compressors are an integral part of air conditioning systems, which are a subset of HVAC systems. Compressed refrigerant gases are used to cool and dehumidify the air in residential, commercial, and industrial buildings. The compressor pressurizes the refrigerant, initiating the cooling cycle that removes heat from the indoor air and releases it outside.
5. Compressor Types:
Refrigeration and HVAC systems utilize different types of air compressors. Reciprocating compressors, rotary screw compressors, and scroll compressors are commonly used in these applications. The selection of the compressor type depends on factors such as system size, capacity requirements, efficiency, and application-specific considerations.
6. Energy Efficiency:
Efficient operation of air compressors is crucial for refrigeration and HVAC systems. Energy-efficient compressors help minimize power consumption and reduce operating costs. Additionally, proper compressor sizing and system design contribute to the overall energy efficiency of refrigeration and HVAC systems.
By effectively compressing refrigerant gases and facilitating the heat transfer process, air compressors enable the cooling and heating functions in refrigeration and HVAC systems, ensuring comfortable indoor environments and efficient temperature control.
.webp)
In which industries are air compressors widely used?
Air compressors find extensive usage across various industries due to their versatility and ability to generate compressed air. Here are some industries where air compressors are widely employed:
1. Manufacturing: Air compressors are essential in manufacturing processes for powering pneumatic tools and equipment. They are used for tasks such as operating assembly lines, powering robotic machinery, running paint sprayers, and driving pneumatic actuators.
2. Construction: Air compressors play a crucial role in the construction industry. They power pneumatic tools like jackhammers, nail guns, impact wrenches, and concrete breakers. Compressed air is also used for concrete spraying, sandblasting, and operating air-powered lifts and hoists.
3. Automotive: Air compressors are widely used in automotive manufacturing and repair. They power air tools used in auto body shops, tire inflation equipment, pneumatic lifts, and air-operated brake systems. Compressed air is also utilized in vehicle painting and drying processes.
4. Oil and Gas: The oil and gas industry extensively relies on air compressors for various applications. They are used for pneumatic drilling, powering pneumatic tools in refineries and petrochemical plants, operating pneumatic valves and actuators, and providing instrument air for control systems.
5. Food and Beverage: Air compressors are employed in the food and beverage industry for tasks such as packaging, bottling, and sealing. They power pneumatic conveying systems, control air pressure in food processing equipment, and provide clean compressed air for food handling and storage.
6. Pharmaceutical and Healthcare: Air compressors find application in pharmaceutical manufacturing and healthcare facilities. They are used for operating medical equipment, such as ventilators and dental tools. Compressed air is also utilized in pharmaceutical processes, including tablet coating, fluid bed drying, and aseptic packaging.
7. Aerospace: The aerospace industry relies on air compressors for various applications, including aircraft maintenance and assembly. They power pneumatic tools for aircraft repair, provide compressed air for cleaning and pressurizing systems, and support ground operations, such as tire inflation and aircraft de-icing.
8. Mining: Air compressors are extensively used in the mining industry. They power pneumatic tools for drilling, rock blasting, and excavation. Compressed air is also utilized for ventilation, conveying materials, and operating underground equipment.
9. Energy and Utilities: Air compressors play a vital role in the energy and utilities sector. They are used in power generation plants for pneumatic control systems, instrument air, and operating pneumatic valves. Compressed air is also employed for cleaning and maintenance purposes.
These are just a few examples of the industries where air compressors are widely utilized. The versatility and reliability of air compressors make them indispensable in numerous applications across diverse sectors.


editor by CX 2024-02-22
China Best Sales 5HP Refrigeration Scroll Compressor Vr61kf-Tfp-542 Screw Type Air Compressor air compressor for sale
Product Description
Specifications
|
Condition |
New |
|
Product Name |
Scroll Compressor |
|
Model |
VR61KF-TFP-542 |
|
Application |
Refrigeration Parts |
|
Refrigerant |
R22 |
|
Brand |
CHINAMFG |
|
Voltage |
220-380V/50-60HZ |
|
Power Source |
AC Power |
|
After-sales Service Provided |
Online support |
PRODUCT DESCRIPION
Dabfoss Refrigeration Scroll Compressor VR61KF-TFP-542 3 Phase 380V 50HZ
Feature:
Refrigerant: R22 Volt/HZ: 220/380v 50/60 Hz
Nature of CHINAMFG Compressor:
*Outstanding reliability;
*Fewer moving parts;
*Compliance feature offers unprecedented liquid handing capability;
*Internal motor protect motor from high temp and high current;
*Very low noise/gas pulsation;
*Five describes quieter than position compressor;
*Simplified system design;
*Unique unload start feature requires no start capacitors/relay high heat pump capacity due to nearly 100% volumetric efficiency;
*Selection scope ranges from 1HP to 30HP, and is up rising.
Details Images
Recommend Products
Packing & Delivery
COMPANY PROFILE
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Online Support |
|---|---|
| Warranty: | 1 Year |
| Installation Type: | Movable Type |
| Samples: |
US$ 400/Piece
1 Piece(Min.Order) | Order Sample wooden case
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
How does variable speed drive technology improve air compressor efficiency?
Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:
1. Matching Air Demand:
Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.
2. Reduced Unloaded Running Time:
Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.
3. Soft Starting:
Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.
4. Energy Savings at Partial Load:
In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.
5. Elimination of On/Off Cycling:
Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.
6. Enhanced System Control:
VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.
By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.
.webp)
What safety precautions should be taken when working with compressed air?
Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider:
1. Personal Protective Equipment (PPE):
Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards.
2. Compressed Air Storage:
Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained.
3. Pressure Regulation:
Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure.
4. Air Hose Inspection:
Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure.
5. Air Blowguns:
Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials.
6. Air Tool Safety:
Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts.
7. Air Compressor Maintenance:
Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor.
8. Training and Education:
Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace.
9. Lockout/Tagout:
When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system.
10. Proper Ventilation:
Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment.
By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.
.webp)
What is the difference between a piston and rotary screw compressor?
Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types:
1. Operating Principle:
- Piston Compressors: Piston compressors, also known as reciprocating compressors, use one or more pistons driven by a crankshaft to compress air. The piston moves up and down within a cylinder, creating a vacuum during the intake stroke and compressing the air during the compression stroke.
- Rotary Screw Compressors: Rotary screw compressors utilize two intermeshing screws (rotors) to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads.
2. Compression Method:
- Piston Compressors: Piston compressors achieve compression through a positive displacement process. The air is drawn into the cylinder and compressed as the piston moves back and forth. The compression is intermittent, occurring in discrete cycles.
- Rotary Screw Compressors: Rotary screw compressors also employ a positive displacement method. The compression is continuous as the rotating screws create a continuous flow of air and compress it gradually as it moves along the screw threads.
3. Efficiency:
- Piston Compressors: Piston compressors are known for their high efficiency at lower flow rates and higher pressures. They are well-suited for applications that require intermittent or variable air demand.
- Rotary Screw Compressors: Rotary screw compressors are highly efficient for continuous operation and are designed to handle higher flow rates. They are often used in applications with a constant or steady air demand.
4. Noise Level:
- Piston Compressors: Piston compressors tend to generate more noise during operation due to the reciprocating motion of the pistons and valves.
- Rotary Screw Compressors: Rotary screw compressors are generally quieter in operation compared to piston compressors. The smooth rotation of the screws contributes to reduced noise levels.
5. Maintenance:
- Piston Compressors: Piston compressors typically require more frequent maintenance due to the higher number of moving parts, such as pistons, valves, and rings.
- Rotary Screw Compressors: Rotary screw compressors have fewer moving parts, resulting in lower maintenance requirements. They often have longer service intervals and can operate continuously for extended periods without significant maintenance.
6. Size and Portability:
- Piston Compressors: Piston compressors are available in both smaller portable models and larger stationary units. Portable piston compressors are commonly used in construction, automotive, and DIY applications.
- Rotary Screw Compressors: Rotary screw compressors are typically larger and more suitable for stationary installations in industrial and commercial settings. They are less commonly used in portable applications.
These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.


editor by CX 2024-02-08
China wholesaler Danfos Scroll Parts Air Cooler Refrigeration Compressor Danfos 50Hz R410A Single Hrh051u4 in Stock air compressor repair near me
Product Description
| Hermetic piston compressor, MT/Z medium and high temperature compressor specifications | ||||||||
| Rated Performance R22,R407C-50HZ | ||||||||
| Model | Rated Performance* MT-R22 | Rated Performance** MTZ-R407C | ||||||
| Capacity(W) | Input Power (KW) | Input current(A) | COP (W/W) | Capacity(W) | Input Power (KW) | Input current(A) | COP (W/W) | |
| MT/MTZ 18 JA | 3881 | 1.45 | 2.73 | 2.68 | 3726 | 1.39 | 2.47 | 2.68 |
| MT/MTZ 22 JC | 5363 | 1.89 | 3.31 | 2.84 | 4777 | 1.81 | 3.31 | 2.64 |
| MT/MTZ 28 JE | 7378 | 2.55 | 4.56 | 2.89 | 6137 | 2.35 | 4.39 | 2.61 |
| MT/MTZ 32 JF | 8064 | 2.98 | 4.97 | 2.70 | 6941 | 2.67 | 5.03 | 2.60 |
| MT/MTZ 36 JG | 9272 | 3.37 | 5.77 | 27.5 | 7994 | 3.12 | 5.71 | 2.56 |
| MT/MTZ 40 JH | 1571 | 3.85 | 6.47 | 2.72 | 9128 | 3.61 | 6.45 | 2.53 |
| MT/MTZ 44 HJ | 11037 | 3.89 | 7.37 | 2.84 | 9867 | 3.63 | 6.49 | 2.72 |
| MT/MTZ 50 HK | 12324 | 4.32 | 8.46 | 2.85 | 11266 | 4.11 | 7.34 | 2.74 |
| MT/MTZ 56 HL | 13771 | 5.04 | 10.27 | 2.73 | 12944 | 4.69 | 8.36 | 2.76 |
| MT/MTZ 64 HM | 15820 | 5.66 | 9.54 | 2.79 | 14587 | 5.25 | 9.35 | 2.78 |
| MT/MTZ 72 HN | 17124 | 6.31 | 10.54 | 2.71 | 16380 | 5.97 | 10.48 | 2.74 |
| MT/MTZ 80 HP | 19534 | 7.13 | 11.58 | 2.74 | 18525 | 6.83 | 11.83 | 2.71 |
| MT/MTZ 100 HS | 23403 | 7.98 | 14.59 | 2.93 | 22111 | 7.85 | 13.58 | 2.82 |
| MT/MTZ 125 HU | 3571 | 10.66 | 17.37 | 2.85 | 29212 | 10.15 | 16.00 | 2.88 |
| MT/MTZ 144 HV | 34340 | 11.95 | 22.75 | 2.87 | 32934 | 11.57 | 18.46 | 2.85 |
| MT/MTZ 160 HW | 38273 | 13.39 | 22.16 | 2.86 | 37386 | 13.28 | 21.40 | 2.82 |
| MTM/MTZ200 HSS | 46807 | 15.97 | 29.19 | 2.93 | 43780 | 15.54 | 26.90 | 2.82 |
| MTM/MTZ250HUU | 6 0571 | 21.33 | 34.75 | 2.85 | 57839 | 20.09 | 31.69 | 2.88 |
| MTM/MTZ288 HVV | 68379 | 23.91 | 45.50 | 2.87 | 65225 | 22.92 | 36.56 | 2.85 |
| MTM/MTZ 320 HWW | 76547 | 26.79 | 44.32 | 2.86 | 74571 | 26.30 | 42.37 | 2.81 |
| Rated Performance*High Efficiency CompressorR22-50HZ | ||||
| Model | Capacity/(W) | Input Power (KW) | Inputcuprret/(A) | COP(W/W) |
| MT 45 HJ | 10786 | 3.62 | 6.86 | 2.98 |
| MT 51 HK | 12300 | 4.01 | 7.86 | 3.07 |
| MT 57 HL | 13711 | 4.54 | 9.24 | 3.02 |
| MT 65 HM | 15763 | 5.23 | 8.81 | 3.01 |
| MT 73 HN | 17863 | 5.98 | 9.99 | 2.99 |
| MT 81 HP | 25718 | 6.94 | 11.27 | 2.93 |
| R134a,R404A,R507-50Hz | ||||||||
| Model | Rated Performance* R134A | Rated Performance**R404A,R507-50HZ | ||||||
| Capacity(W) | Input Power (KW) | Input current(A) | COP (W/W) | Capacity(W) | Input Power (KW) | Input current(A) | COP (W/W) | |
| MT/MTZ 18 JA | 2553 | 0.99 | 2.19 | 2.58 | 1865 | 1.2 | 2.47 | 1.56 |
| MT/MTZ22 JC | 3352 | 1.20 | 2.51 | 2.80 | 2673 | 1.56 | 2.96 | 1.71 |
| MT/MTZ 28 JE | 4215 | 1.53 | 3.30 | 2.75 | 3343 | 1.95 | 3.80 | 1.72 |
| MT/MTZ 32 JF | 4951 | 1.87 | 3.94 | 2.65 | 3747 | 2.28 | 4.51 | 1.64 |
| MT/MTZ 36 JG | 6005 | 2.13 | 4.09 | 2.81 | 4371 | 2.66 | 4.91 | 1.64 |
| MT/MTZ 40 JH | 6398 | 2.33 | 4.89 | 2.74 | 4889 | 3.00 | 5.36 | 1.63 |
| MT/MTZ 44 HJ | 6867 | 2.52 | 5.65 | 2.72 | 5152 | 3.16 | 6.37 | 1.63 |
| MT/MTZ 50 HK | 8071 | 2.88 | 5.50 | 2.80 | 6152 | 3.61 | 6.53 | 1.70 |
| MT/MTZ 56 HL | 9069 | 3.21 | 5.83 | 2.82 | 7001 | 4.00 | 7.07 | 1.75 |
| MT/MTZ 64 HM | 1571 | 3.62 | 6.96 | 2.86 | 8132 | 4.54 | 8.30 | 1.79 |
| MT/MTZ 72 HP | 11853 | 4.01 | 7.20 | 2.96 | 9153 | 4.99 | 8.64 | 1.84 |
| MT/MTZ 80 HP | 13578 | 4.63 | 8.45 | 2.93 | 10524 | 5.84 | 10.12 | 1.80 |
| MT/MTZ 100 HS | 15529 | 5.28 | 10.24 | 2.94 | 12571 | 6.83 | 12.16 | 1.76 |
| MT/MTZ 125 HU | 19067 | 6.29 | 10.80 | 3.03 | 15714 | 8.53 | 13.85 | 1.84 |
| MT/MTZ 144 HV | 23620 | 7.83 | 13.78 | 3.02 | 18076 | 9.74 | 16.25 | 1.86 |
| MT/MTZ 160 HW | 25856 | 8.57 | 14.67 | 3.02 | 25713 | 11.00 | 17.94 | 1.84 |
| MTM/MTZ200 HSS | 3571 | 10.45 | 20.28 | 2.94 | 23800 | 13.53 | 24.06 | 1.76 |
| MTM/MTZ 250 HUU | 37746 | 12.45 | 21.38 | 3.03 | 31121 | 16.88 | 27.43 | 1.84 |
| MTM/MTZ288 HVV | 46773 | 15.49 | 27.29 | 3.02 | 35779 | 19.28 | 32.18 | 1.86 |
| MTM/MTZ 320 HWW | 51169 | 16.98 | 29.06 | 3.01 | 40093 | 21.76 | 35.51 | 1.84 |
| 50HZ DATA | |||||||||||
| Model | 50Hz | Nominal Cooling Capacity/Capacity | Input Power | COP | E.E.R. | c Displacement | Displacement | Injection flow | d Net.W | ||
| TR | W | Btu/h | KW | W/W | Btu/h/W | cm³/rev | m3/h | dm3 | kg | ||
| R22 Single | Sm084 | 7 | 20400 | 69600 | 6.12 | 3.33 | 11.4 | 114.5 | 19.92 | 3.3 | 64 |
| SM090 | 7.5 | 21800 | 74400 | 6.54 | 3.33 | 11.4 | 120.5 | 20.97 | 3.3 | 65 | |
| SM100 | 8 | 23100 | 79000 | 6.96 | 3.33 | 11.3 | 127.2 | 22.13 | 3.3 | 65 | |
| SM110 | 9 | 25900 | 88600 | 7.82 | 3.32 | 11.3 | 144.2 | 25.09 | 3.3 | 73 | |
| SM112 | 9.5 | 27600 | 94400 | 7.92 | 3.49 | 11.9 | 151.5 | 26.36 | 3.3 | 64 | |
| SM115 | 9.5 | 28000 | 95600 | 8.31 | 3.37 | 11.5 | 155.0 | 26.97 | 3.8 | 78 | |
| SM120 | 10 | 35710 | 157100 | 8.96 | 3.36 | 11.5 | 166.6 | 28.99 | 3.3 | 73 | |
| SM124 | 10 | 31200 | 106300 | 8.75 | 3.56 | 12.2 | 169.5 | 29.5 | 3.3 | 64 | |
| SM125 | 10 | 35710 | 157100 | 8.93 | 3.37 | 11.5 | 166.6 | 28.99 | 3.8 | 78 | |
| SM147 | 12 | 36000 | 123000 | 10.08 | 3.58 | 12.2 | 193.5 | 33.7 | 3.3 | 67 | |
| SM148 | 12 | 36100 | 123100 | 10.80 | 3.34 | 11.4 | 199.0 | 34.60 | 3.6 | 88 | |
| SM160 | 13 | 39100 | 133500 | 11.60 | 3.37 | 11.5 | 216.6 | 37.69 | 4.0 | 90 | |
| SM161 | 13 | 39000 | 133200 | 11.59 | 3.37 | 11.5 | 216.6 | 37.69 | 3.6 | 88 | |
| SM175 | 14 | 42000 | 143400 | 12.46 | 3.37 | 11.5 | 233.0 | 40.54 | 6.2 | 100 | |
| SM/SY185 | 15 | 45500 | 155300 | 13.62 | 3.34 | 11.4 | 249.9 | 43.48 | 6.2 | 100 | |
| SY240 | 20 | 61200 | 2 0571 0 | 18.20 | 3.36 | 11.5 | 347.8 | 60.50 | 8.0 | 150 | |
| SY300 | 25 | 78200 | 267000 | 22.83 | 3.43 | 11.7 | 437.5 | 76.10 | 8.0 | 157 | |
| SY380 | 30 | 94500 | 322700 | 27.4 | 3.46 | 11.8 | 531.2 | 92.40 | 8.4 | 158 | |
| R107C Single | SZ084 | 7 | 19300 | 66000 | 6.13 | 3.15 | 10.7 | 114.5 | 19.92 | 3.3 | 64 |
| SZ090 | 7.5 | 20400 | 69600 | 6.45 | 3.16 | 10.8 | 120.5 | 20.97 | 3.3 | 65 | |
| SZ100 | 8 | 21600 | 73700 | 6.84 | 3.15 | 10.8 | 127.2 | 22.13 | 3.3 | 65 | |
| SZ110 | 9 | 24600 | 84000 | 7.76 | 3.17 | 10.8 | 144.2 | 25.09 | 3.3 | 73 | |
| SZ115 | 9.5 | 26900 | 91700 | 8.49 | 3.16 | 10.8 | 155.0 | 26.97 | 3.8 | 78 | |
| SZ120 | 10 | 28600 | 97600 | 8.98 | 3.18 | 10.9 | 166.6 | 28.99 | 3.3 | 73 | |
| SZ125 | 10 | 28600 | 97500 | 8.95 | 3.19 | 10.9 | 166.6 | 28.99 | 3.8 | 78 | |
| SZ148 | 12 | 35100 | 119800 | 10.99 | 3.19 | 10.9 | 199.0 | 34.60 | 3.6 | 88 | |
| SZ160 | 13 | 38600 | 131800 | 11.77 | 3.28 | 11.2 | 216.6 | 37.69 | 4.0 | 90 | |
| SZ161 | 13 | 37900 | 129500 | 11.83 | 3.21 | 10.9 | 216.6 | 37.69 | 3.6 | 88 | |
| SZ175 | 14 | 45710 | 136900 | 12.67 | 3.17 | 10.8 | 233.0 | 40.54 | 6.2 | 100 | |
| SZ185 | 15 | 43100 | 147100 | 13.62 | 3.16 | 10.8 | 249.9 | 43.48 | 6.2 | 100 | |
| SZ240 | 20 | 59100 | 201800 | 18.60 | 3.18 | 10.9 | 347.8 | 60.50 | 8.0 | 150 | |
| SZ300 | 25 | 72800 | 248300 | 22.70 | 3.20 | 10.9 | 437.5 | 76.10 | 8.0 | 157 | |
| SZ380 | 30 | 89600 | 305900 | 27.60 | 3.25 | 11.1 | 431.2 | 92.40 | 8.4 | 158 | |
| Model | Nominal Cooling Capacity 60Hz | Nominal Cooling Capacity/Capacity | Input Power | maximum rated current | COP | Displacement | Displacement | Injection flow | Net.W | |||
| TR | W | Btu/h | kW | MCC | COP W/W EERBtu/h/W | cmVrev | m3/h | dm3 | kg | |||
| R22 | HRM032U4 | 2.7 | 7850 | 26790 | 2.55 | 9.5 | 3.08 | 10.5 | 43.8 | 7.6 | 1.06 | 31 |
| HRM034U4 | 2.8 | 8350 | 28490 | 2.66 | 9.5 | 3.14 | 10.5 | 46.2 | 8.03 | 1.06 | 31 | |
| HRM038U4 | 32 | 9240 | 31520 | 2.94 | 10.0 | 3.14 | 10.7 | 46.2 | 8.03 | 1.06 | 31 | |
| HRM040U4 | 3.3 | 9710 | 33120 | 2.98 | 10 | 3.26 | 11.1 | 54.4 | 9.47 | 1.06 | 31 | |
| HRM042U4 | 35 | 10190 | 34770 | 3.13 | 11.0 | 3.26 | 11.1 | 57.2 | 9.95 | 1.06 | 31 | |
| HRM045U4 | 3.8 | 10940 | 37310 | 3.45 | 12 | 3.17 | 10.8 | 61.5 | 10.69 | 1.33 | 31 | |
| HRM047U4 | 3.9 | 11500 | 39250 | 3.57 | 12.0 | 3.23 | 11.0 | 64.1 | 11.15 | 1.33 | 31 | |
| HRM048U4 | 4 | 11510 | 39270 | 3.57 | 12.5 | 3.23 | 11 | 64.4 | 11.21 | 1.57 | 37 | |
| HRM051T4 | 4.3 | 12390 | 44280 | 3.67 | 13.0 | 3.37 | 11.5 | 68.8 | 11.98 | 1.57 | 37 | |
| HRM051U4 | 4.3 | 12800 | 43690 | 3.83 | 13 | 3.34 | 11.4 | 68.8 | 11.98 | 1.57 | 37 | |
| HRM054U4 | 4.5 | 13390 | 45680 | 3.97 | 13.1 | 3.37 | 11.5 | 72.9 | 12.69 | 1.57 | 37 | |
| HRM058U4 | 4.8 | 14340 | 48930 | 4.25 | 15 | 3.37 | 11.5 | 78.2 | 13.6 | 1.57 | 37 | |
| HRM060T4 | 5.0 | 14570 | 49720 | 4.28 | 15.0 | 3.40 | 11.6 | 81.0 | 14.09 | 1.57 | 37 | |
| HRM060U4 | 5.0 | 14820 | 5 0571 | 4.4 | 15 | 3.37 | 11.5 | 81 | 14.09 | 1.57 | 37 | |
| HLM068T4 | 5.7 | 16880 | 57580 | 5.00 | 15.0 | 3.37 | 11.5 | 93.1 | 16.20 | 1.57 | 37 | |
| HLM072T4 | 6.0 | 17840 | 6 0571 | 5.29 | 15 | 3.37 | 11.5 | 98.7 | 17.2 | 1.57 | 37 | |
| HLM075T4 | 6.3 | 18430 | 62880 | 5.37 | 16.0 | 3.43 | 11.7 | 102.8 | 17.88 | 1.57 | 37 | |
| HLM081T4 | 6.8 | 19890 | 67880 | 5.8 | 17 | 3.43 | 11.7 | 110.9 | 19.3 | 1.57 | 37 | |
| HCM094T4 | 7.8 | 23060 | 78670 | 6.80 | 21.0 | 3.39 | 11.6 | 126.0 | 21.93 | 2.66 | 44 | |
| HCM109T4 | 9.1 | 26690 | 91070 | 7.77 | 24 | 3.43 | 11.7 | 148.8 | 25.89 | 2.66 | 44 | |
| HCM120T4 | 10.0 | 29130 | 99390 | 8.51 | 25.0 | 3.42 | 11.7 | 162.4 | 28.26 | 2.66 | 44 | |
| R407C | HRP034T4 | 2.8 | 7940 | 27080 | 2.68 | 9.5 | 2.96 | 10.1 | 46.2 | 8 | 1.06 | 31 |
| HRP038T4 | 3.2 | 8840 | 30150 | 2.82 | 11 | 3.14 | 10.7 | 51.6 | 8.98 | 1.06 | 31 | |
| HRP040T4 | 3.3 | 9110 | 31080 | 3.14 | 11.5 | 2.9 | 9.9 | 54.4 | 9.47 | 1.06 | 31 | |
| HRP042T4 | 3.5 | 9580 | 32680 | 3.3 | 10 | 2.9 | 9.9 | 57.2 | 9.95 | 1.06 | 31 | |
| HRP045T4 | 3.8 | 1571 | 36890 | 3.58 | 12 | 3.02 | 10.3 | 61.5 | 10.69 | 1.33 | 31 | |
| HRP047T4 | 3.9 | 11130 | 37980 | 3.69 | 12 | 3.02 | 10.3 | 64.1 | 11.15 1.33 | 31 | ||
| HRP048T4 | 4.0 | 11100 | 37880 | 3.35 | 12 | 3.31 | 11.3 | 64.4 | 1L21 | 1.57 | 37 | |
| HRP051T4 | 4.3 | 12120 | 41370 | 3.83 | 13 | 3.17 | 10.8 | 68.8 | 11.98 | 1.57 | 37 | |
| HRP054T4 | 4.5 | 12570 | 42880 | 3.97 | 12.5 | 3.17 | 10.8 | 72.8 | 12.66 | 1.57 | 37 | |
| HRP058T4 | 4.8 | 13470 | 45970 | 4.25 | 14.0 | 3.17 | 10.8 | 78.2 | 13.6 | 1.57 | 37 | |
| HRP060T4 | 5.0 | 13860 | 47280 | 4.26 | 15 | 3.25 | 11.1 | 81 | 14.09 | 1.57 | 37 | |
| HLP068T4 | 5.7 | 15700 | 53560 | 5.10 | 15.0 | 3.08 | 10.5 | 93.1 | 16.20 | 1.57 | 37 | |
| HLP072T4 | 6.0 | 16810 | 57350 | 5.16 | 15 | 3.26 | 11.1 | 98.7 | 17.17 | 1.57 | 37 | |
| HLP075T4 | 6.3 | 18040 | 61550 | 5.54 | 16.0 | 3.26 | 11-1 | 102.8 | 17.88 | 1.57 | 37 | |
| HLP081T4 | 6.8 | 18600 | 63470 | 5,66 | 17 | 3.28 | 11,2 | 110,9 | 19,30 | 1,57 | 37 | |
| HCP094T4 | 7.8 | 21590 | 73660 | 6.63 | 21.0 | 3.26 | 11.1 | 126.0 | 21.93 | 2.66 | 44 | |
| HCP109T4 | 9.1 | 25070 | 85550 | 7.77 | 24 | 3.23 | 11 | 148.8 | 25.89 | 2.66 | 44 | |
| HCP120T4 | 10.0 | 27370 | 93400 | 8.47 | 25.0 | 3.23 | 11.0 | 162.4 | 28.26 | 2.66 | 44 | |
| R410A | HRH571U4 | 2.4 | 7120 | 24310 | 2.43 | 10 | 2.93 | 10 | 27.8 | 4.84 | 1.06 | 31 |
| HRH031U4 | 26 | 7530 | 25710 | 2.67 | 10.0 | 2.82 | 9.62 | 29.8 | 5.19 | 1.06 | 31 | |
| HRH032U4 | 2.7 | 7670 | 26170 | 2.75 | 10 | 2.79 | 9.51 | 30.6 | 5.33 | 1.06 | 31 | |
| HRH034U4 | 2.8 | 8500 | 29000 | 2.90 | 10.0 | 2.93 | 10.0 | 33.3 | 5.75 | 1.06 | 31 | |
| HRH036U4 | 3 | 8820 | 30110 | 3.13 | 10 | 2.82 | 9.62 | 34.7 | 6.04 | 1.06 | 31 | |
| HRH038U4 | 3.2 | 9250 | 31560 | 3.35 | 12.0 | 2.76 | 9.41 | 36.5 | 6.36 | 1.06 | 32 | |
| HRH040U4 | 3.3 | 15710 | 34810 | 3.58 | 12 | 2.85 | 9.72 | 39.6 | 6.9 | 1.33 | 32 | |
| HRH041U4 | 3.3 | 10050 | 34300 | 3.43 | 12.5 | 2.93 | 10 | 39.3 | 6.8 | 1.57 | 37 | |
| HRH044U4 | 3.7 | 1 0571 | 36940 | 3.92 | 13.5 | 2.76 | 9.41 | 42.6 | 7.41 | 1.57 | 37 | |
| HRH049U4 | 4.1 | 12110 | 41320 | 4.04 | 13.5 | 2.99 | 10.22 | 47.4 | 8.24 | 1.57 | 37 | |
| HRH051U4 | 4.3 | 12860 | 43890 | 4.21 | 13 | 3.05 | 10.42 | 49.3 | 5.58 | 1.57 | 37 | |
| HRH054U4 | 4.5 | 13340 | 45510 | 4.41 | 15.0 | 3.02 | 10.32 | 52.1 | 9.07 | 1.57 | 37 | |
| HRH056U4 | 4.7 | 13830 | 47200 | 4.58 | 15 | 3.02 | 1031 | 54.1 | 9.42 | 1.57 | 37 | |
| HLH061T4 | 5.1 | 15210 | 51880 | 4.89 | 15.0 | 3.11 | 1061 | 57.8 | 10.10 | 1.57 | 37 | |
| HLH068T4 | 5.7 | 16880 | 57610 | 5.26 | 19 | 3.21 | 1096 | 64.4 | 11.21 | 1.57 | 37 | |
| HLJ072T4 | 6.0 | 17840 | 60900 | 5.56 | 19.0 | 3.21 | 11.0 | 68.0 | 11.82 | 1.57 | 37 | |
| HLJ075T4 | 6.3 | 18600 | 63490 | 5.77 | 18 | 3.22 | 11 | 70.8 | 12.32 | 1.57 | 37 | |
| HLJ083T4 | 6.9 | 20420 | 69690 | 6.28 | 19.0 | 3.25 | Hl | 78.1 | 13.59 | 1.57 | 37 | |
| HCJ090T4 | 7.5 | 22320 | 76190 | 7.19 | 19 | 3.11 | 10.6 | 86.9 | 15.11 | 2.66 | 44 | |
| HCJ105T4 | 8.8 | 26100 | 89090 | 8.25 | 25.0 | 3.16 | 10.8 | 101.6 | 17.68 | 2.66 | 44 | |
| HCJ120T4 | 10 | 29610 | 157180 | 9.53 | 27 | 3.11 | 10.6 | 116.4 | 20.24 | 2.66 | 44 | |
| Model | HP | Voltage | ||||||
| MLM019T5LP9 | 2.5 | 220-240V-1-50HZ | ||||||
| MLM571T5LP9 | 3 | 220-240V-1-50HZ | ||||||
| MLM026T5LP9 | 3.5 | 220-240V-1-50HZ | ||||||
| MLM015T4LP9 | 2 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM019T4LP9 | 2.5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM571T4LP9 | 3 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM026T4LP9 | 3.5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM030T4LC9 | 4 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM038T4LC9 | 5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM045T4LC9 | 6 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM048T4LC9 | 7 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM058T4LC9 | 7.5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM066T4LC9 | 9 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM076T4LC9 | 10 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| *MLM series general-purpose lubricating oil is AB alkyl benzene oil, the refrigerant is R22. | ||||||||
| Model | HP | Voltage | ||||||
| MLZ019T5LP9 | 2.5 | 220-240V-1-50HZ | ||||||
| MLZ571T5LP9 | 3 | 220-240V-1-50HZ | ||||||
| MLZ026T5LP9 | 3.5 | 220-240V-1-50HZ | ||||||
| MLZ015T4LP9 | 2 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ019T4LP9 | 2.5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ571T4LP9 | 3 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ026T4LP9 | 3.5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ030T4LC9 | 4 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ038T4LC9 | 5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ045T4LC9 | 6 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ048T4LC9 | 7 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ058T4LC9 | 7.5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ066T4LC9 | 9 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ076T4LC9 | 10 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| *MLM series general-purpose lubricating oil is PVE ugly oil, refrigerant R404A/R134A/R507/R22 | ||||||||
Archean refrigeration has been focusing on the refrigeration industry for more than 10 years. The compressors are sold all over the world and have been well received. The company has accumulated strong experience in the compressor market, rich technical support, and a satisfactory one-stop procurement solution. You can rest assured You don’t need to worry about this series, from placing an order to receiving the goods. We provide a complete solution to serve customers well, which is our purpose of hospitality.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Installation Type: | Movable Type |
|---|---|
| Lubrication Style: | Lubricated |
| Cylinder Position: | Vertical |
| Model: | Hrh051u4lp6 |
| Samples: |
US$ 100/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
Can air compressors be used for shipbuilding and maritime applications?
Air compressors are widely used in shipbuilding and maritime applications for a variety of tasks and operations. The maritime industry relies on compressed air for numerous essential functions. Here’s an overview of how air compressors are employed in shipbuilding and maritime applications:
1. Pneumatic Tools and Equipment:
Air compressors are extensively used to power pneumatic tools and equipment in shipbuilding and maritime operations. Pneumatic tools such as impact wrenches, drills, grinders, sanders, and chipping hammers require compressed air to function. The versatility and power provided by compressed air make it an ideal energy source for heavy-duty tasks, maintenance, and construction activities in shipyards and onboard vessels.
2. Painting and Surface Preparation:
Air compressors play a crucial role in painting and surface preparation during shipbuilding and maintenance. Compressed air is used to power air spray guns, sandblasting equipment, and other surface preparation tools. Compressed air provides the force necessary for efficient and uniform application of paints, coatings, and protective finishes, ensuring the durability and aesthetics of ship surfaces.
3. Pneumatic Actuation and Controls:
Air compressors are employed in pneumatic actuation and control systems onboard ships. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control propulsion systems, and manage various shipboard processes. Pneumatic control systems offer reliability and safety advantages in maritime applications.
4. Air Start Systems:
In large marine engines, air compressors are used in air start systems. Compressed air is utilized to initiate the combustion process in the engine cylinders. The compressed air is injected into the cylinders to turn the engine’s crankshaft, enabling the ignition of fuel and starting the engine. Air start systems are commonly found in ship propulsion systems and power generation plants onboard vessels.
5. Pneumatic Conveying and Material Handling:
In shipbuilding and maritime operations, compressed air is used for pneumatic conveying and material handling. Compressed air is utilized to transport bulk materials, such as cement, sand, and grain, through pipelines or hoses. Pneumatic conveying systems enable efficient and controlled transfer of materials, facilitating construction, cargo loading, and unloading processes.
6. Air Conditioning and Ventilation:
Air compressors are involved in air conditioning and ventilation systems onboard ships. Compressed air powers air conditioning units, ventilation fans, and blowers, ensuring proper air circulation, cooling, and temperature control in various ship compartments, cabins, and machinery spaces. Compressed air-driven systems contribute to the comfort, safety, and operational efficiency of maritime environments.
These are just a few examples of how air compressors are utilized in shipbuilding and maritime applications. Compressed air’s versatility, reliability, and convenience make it an indispensable energy source for various tasks and systems in the maritime industry.
.webp)
Can air compressors be integrated into automated systems?
Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:
Pneumatic Automation:
Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.
Control and Regulation:
In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.
Sequential Operations:
Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.
Energy Efficiency:
Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.
Monitoring and Diagnostics:
Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.
When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.
In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.
.webp)
What is the impact of tank size on air compressor performance?
The tank size of an air compressor plays a significant role in its performance and functionality. Here are the key impacts of tank size:
1. Air Storage Capacity: The primary function of the air compressor tank is to store compressed air. A larger tank size allows for greater air storage capacity. This means the compressor can build up a reserve of compressed air, which can be useful for applications that require intermittent or fluctuating air demand. Having a larger tank ensures a steady supply of compressed air during peak usage periods.
2. Run Time: The tank size affects the run time of the air compressor. A larger tank can provide longer continuous operation before the compressor motor needs to restart. This is because the compressed air in the tank can be used to meet the demand without the need for the compressor to run continuously. It reduces the frequency of motor cycling, which can improve energy efficiency and prolong the motor’s lifespan.
3. Pressure Stability: A larger tank helps maintain stable pressure during usage. When the compressor is running, it fills the tank until it reaches a specified pressure level, known as the cut-out pressure. As the air is consumed from the tank, the pressure drops to a certain level, known as the cut-in pressure, at which point the compressor restarts to refill the tank. A larger tank size results in a slower pressure drop during usage, ensuring more consistent and stable pressure for the connected tools or equipment.
4. Duty Cycle: The duty cycle refers to the amount of time an air compressor can operate within a given time period. A larger tank size can increase the duty cycle of the compressor. The compressor can run for longer periods before reaching its duty cycle limit, reducing the risk of overheating and improving overall performance.
5. Tool Compatibility: The tank size can also impact the compatibility with certain tools or equipment. Some tools, such as high-demand pneumatic tools or spray guns, require a continuous and adequate supply of compressed air. A larger tank size ensures that the compressor can meet the air demands of such tools without causing pressure drops or affecting performance.
It is important to note that while a larger tank size offers advantages in terms of air storage and performance, it also results in a larger and heavier compressor unit. Consider the intended application, available space, and portability requirements when selecting an air compressor with the appropriate tank size.
Ultimately, the optimal tank size for an air compressor depends on the specific needs of the user and the intended application. Assess the air requirements, duty cycle, and desired performance to determine the most suitable tank size for your air compressor.


editor by CX 2024-02-01